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A. G. KHOVANSKIÏ 

Fewnomials and Pfaff Manifolds 

The ideology of fewnomials implies that real varieties, defined by "simple" 
(not too complicated) sets of equations, must have a simple topology. 
Of course, this is not always true. The fewnomial ideology, however, is 
helpful in finding a number of rigorous results. 

The classical Bézout theorem states that the number of complex 
solutions of a set of lc polynomial equations in Jc unknowns can be esti­
mated in terms of their degrees (it equals the product of the degrees). 
This report is concerned with the real and the transcendental analogues 
of this theorem: for a wide class of real transcendental equations (includ­
ing all real algebraic ones) the number of solutions of a set of Jc such 
equations in Jc real unknowns if finite and can be explicitly estimated in 
terms of the "complexity" of the equations. A more general result in­
volves a construction of a class of transcendental real varieties resembling 
algebraic varieties. 

These results provide new information about polynomial equations 
(see Sections 1 and 11) and level sets of elementary functions (see Sections 2 
and 10). 

1. Real fewnomials 

The topology of geometric objects determined by algebraic equations 
(real algebraic curves, surfaces, singularities, etc.) gets more and more 
complex as the degree of the equation increase. As recently found com­
plexity of the topology depends only on the number of monomials contained 
in the equations rather than on their degrees : the following Theorems 1 
and 2 assess the complexity of the topology of geometrical objects in 
terms of the complexity of equations determining the object. 

We begin with the following well-known 

[549] 
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DESCARTES EXILE. The number of positive roots of a polynomial 
in a single real variable does not exceed the number of sign alternations in 
the sequence of its coefficients (null coefficients are deleted from the se­
quence). 

COROLLARY (the Descartes estimate). The number of positive roots of 
a polynomial is less than the number of its terms. 

A. G. Kushnirenko proposed to call polynomials with a small number 
of terms fewnomials. The Descartes estimate shows that independently 
of the degree of a fewnomial (which may be as large as we wish) the num­
ber of its positive roots is small. 

The following Theorems 1 and 2 (see [9]) generalize the Descartes 
estimate to the case of systems of polynomial equations in multi-dimen­
sional real space. 

Denote by q the number of monomials appearing with nonzero coeffi­
cients in at least one of the polynomials of the system. 

THEOREM 1. The number of non-degenerate solutions of a system of Jc 
polynomial equations in Jc positive real unknowns is less than 2a^"1)l2(Jc+l)q. 

THEOREM 2. The sum of Betti numbers of a non-singular algebraic mani­
fold defined in Bk by a non-degenerate system of polynomial equations is 
not greater than an explicitly expressed function of Jc cmd q. The number 
of connected components of a singular algebraic variety cam, also be estimated 
from above in terms of Jc and q. 

The known estimates of the sum of Betti numbers and of the number 
of connected components in Theorem 2, as well as the estimate of the 
number of roots in Theorem 1 contain an unpleasant factor of order 2q2f2. 
Apparently, these estimates are far from being exact. 

The arguments proving Theorems 1 and 2 are not only useful in al­
gebra. Let us state a result related to the theory of elementary functions. 

2. Level surfaces of elementary functions 

We begin with definitions. Here is a list of principal elementary functions: 
the exponent, the logarithm, trigonometric functions (sin, cos, tan, cot) 
and their inverse functions. The function defined in a domain in Bn which 
can be represented as a composition of a finite number of algebraic func­
tions and principal elementary functions is called elementary. An elementary 
manifold is the transversal intersection of non-singular level surfaces of 
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several elementary functions. A map of degree < m of an elementary 
manifold in En is the restriction to the manifold of such a map of Rn into 
Rk that all its components are polynomials of degree < m. 

Ohoose a compact subset K in some Zs-dimensional elementary mani­
fold. 

THEOREM. In any regular value in Rk of a map of degree m of a Jc-dimen-
sional elementary manifold, the number of points in the inverse image 
contained in K is less tJian Gmr. In tliis estimate the constant r depends only 
on the elementary manifold, while tJie constant Ö depends on tlie choice of 
tlie set K as well. 

This theorem may be applied to complex level surfaces of elementary 
functions in several complex variables and to the intersections of such 
surfaces. The theorem has various generalizations. For example, it remains 
valid if instead of level surfaces of elementary functions we consider level 
surfaces of functions which can be represented in quadratures. 

COROLLARY. TJie number of isolated intersection points of a compact 
arc of the graph of an elementary function in one variable with a plane alge­
braic curve of degree m is no greater tJian ömr. If for a compact arc of tJie 
grapJi of a certain function f there exists a sequence of algebraic curves of 
degrees mn, whose number of intersection points witJi tlie arc increases faster 
than any power of tJie numbers mn, then tJie function f is necessarily non-
elementary. 

A similar situation is known in the theory of numbers : according to 
the Liouville theorem algebraic numbers have only "slow" approxima­
tions by rational numbers, so that if for some number there exists a. 
"rapid" approximation, then this number is necessarily transcendental-

Note that elementary functions have special properties also as multi 
valued functions of a complex variable [5]. 

3 . Pfaff curves 

There exists a wide class of real analytic manifolds whose properties are 
similar to those of algebraic manifolds. I t is precisely this fact that the 
theorems of the previous section are based on. 

Now we pass to the simplest variant of this theory. Consider a dynamic 
system on a plane given by a polynomial vector field. The trajectories 
of such a system may differ drastically from algebraic curves. There is 
no analogue of the Bézout theorem for such lines. Thus, for example, 
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the trajectory of the system winding around a cycle, has a countable 
number of points in common with any straight line intersecting the cycle. 
The following constraint on the topology of the trajectory affects its 
properties and makes them similar to those of an algebraic curve. 

DEFINITION. An oriented, smooth (possibly disconnected) curve in 
a plane is said to be a separating solution of a dynamic system if (a) the 
curve consists of one or several trajectories of the system (with natural 
orientation of trajectories) ; (b) the curve does not pass through the sin­
gular points of the system; (c) the curve is the boundary of a certain plane 
domain equipped with a natural boundary orientation. 

'Examples. (1) The cycle of a dynamic System is always its separating 
solution: I t is oriented either as the boundary of the interior domain 
with respect to the cycle, or as the outer domain boundary. (2) A non-
compact trajectory tending to infinity for t-> + oo and for t->—oo is 
a separating solution. (3) A non-critical level line of a function S(xx, x2) 
= c, oriented as the boundary of the domain JET < c, is a separating solu­
tion of the Hamiltonian system xx = —dïïldx2, x2 = dB/dx1. 

DEFINITION. A curve on a plane is called a Pfaff curve of degree n if 
there is an orientation of the curve for which the curve is a separating 
solution of a dynamic system, given by a vector field whose components 
are polynomials of degree n. 

Smooth algebraic curves of degree n +1 are the Pfaff curves of degree n 
(see Example (3)). Thus the Pfaff curves can be viewed as generalizations 
of plane algebraic curves. 

THEOREM (The analogue of the Bézout theorem for Pfaff curves). (1) 
Restrictions of a polynomial of degree m to a Pfaff curve of degree n have at 
most m(n+m) isolated roots. (2) Two Pfaff curves of degrees n and m have 
at most (n + m) (2n + m)+n+l isolated intersection points. 

Let us consider the direct corollaries of this theorem. 

COROLLARIES., (1) All cycles of a dynamic system with polynomial field 
of degree 2 are convex. (2) Restrietions of a polynomial of degree m to a Pfaff 
curve of degree n have at most (n + m— 1) (2n + m— 1) critical values on this 
curve. (3) A Pfaff curve of degree n has at most n +1 non-compact components 
and at most (3n—l) (in—1) inflection points. 

Of course, these estimates, both in the theorem and the corollaries 
are not the best possible (this is indicated, in particular, by the asymmetry 
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with respect to n and m in the second statement of the theorem). However, 
these estimates are not so bad. Thus, for any m and any n > 0 it is easy 
to construct examples where the number of roots in the first statement 
of the theorem is not smaller than one third of the respective estimate. 
The estimate of the number of non-compact components is sharp and the 
estimates of the number of compact components and of the number of 
inflection points have the same order of growth for n->oo as the sharp 
estimates for algebraic curves of degree n + 1 . 

We now pass to the multidimensional case. 

4. Separating solutions and Rolle's theorem 

Let M be a smooth manifold (possibly disconnected, non-oriented and 
infinite-dimensional) and let a be a 1-form on it. Of great significance 
for the sequel is the following generalization of the separating solution 
of dynamic system on a plane. 

DEFINITION. A submanifold of codimension one in M is said to be 
a separating solution of the Pfaff equation a = 0 if\a) the restriction of the 
form a to the submanifold is identically zero; (b) the submanifold does 
not pass through the singular points of the equation (i.e., at each point 
of the submanifold the form a does not vanish on the tangent space); 
(c) the submanifold is a boundary of a domain in M and its coorientation 
defined by the form coincides with the coorientation of the domain bound­
ary (i.e., on the vectors, applied at the submanifold points and outgoing 
from the domain, the form a is positive). 

Example. The surface S = c of a non-singular level of the function H 
is a separating solution of the equation dPL = 0 (it bounds the domain 
S<c). 

A Pfaff Jiypersurface in Rn is a separating solution of the equation 
a = 0 where a is a 1-form in Rn with polynomial coefficients. An algebraic 
hypersurface is a Pfaff hypersurface (see the example). The Pfaff hyper­
surface resembles an algebraic one in many ways. Suppose ß is the restric­
tion of the 1-form with polynomials coefficients to the Pfaff hypersurface. 
A separating solution of the equation ß = 0 on the Pfaff hypersurface 
also possesses properties similar to those of an algebraic manifold. This 
process may be continued. We obtain a wide class of manifolds resembling 
algebraic ones. The formal definition of this class is given in Sections 5, 7. 
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Here we will dwell on a certain property of separating solutions. For 
such solutions we have the following multidimensional variant of Eolle's 
theorem. 

PROPOSITION. BeUveen two intersection points of a connected smooth 
curve with a separating solution of a Pfaff equation there is a point of contact, 
i.e., a point at wMch the tangent vector to the curve lies in hyperplane a = 0. 

The proof is especially easy in the case where the curve intersects the 
separating solution transversally. In this case, at the neighbouring points 
of intersection, the values of the form a on the tangent vectors orienting 
the curve have different signs. Therefore, the form a vanishes at a certain 
intermediate point. 

To demonstrate the significance of Eolle's theorem, we consider a 
simple transcendental generalization of the Descartes " estimate. 

PROPOSITION (Laguerre). The number of real roots of a linear combina-
a 

tion of exponents ]? ^exp(d^) is less than the number of exponents q. 

The Descartes estimate of the number of positive roots of a poly­
nomial follows from the Laguerre proposition by substitution x = exptf. 

The proposition is proved by induction. Let us divide the linear com­
bination by one of ïts exponents and differentiate the quotient. The 
derivative contains fewer exponents. According to Eolle's theorem, the 
number of zeroes of the function does not exceed the number of zeroes 
of the derivative plus 1. 

Pfaff manifold theory is something of a multidimensional generaliza­
tion of this simple argument (unidimensional generalization can be found 
in [4]). 

5, Simple Pfaff manifolds 

Let X be a real analytic manifold and A — a certain finitely generated 
ring of analytical functions on it. 

DEFINITION. The following set of objects is called a simple realization 
of the pair (X, A): (a) an embedding %\ X->Rn such that ring A coin­
cides with the image of the polynomial ring under ut*-, (b) a chain of embedded 
submanifolds in Rn, Z 0 ZJ J X D ... D Xq in which every manifold is a hyper­
surface in the preceding one, the first manifold XQ coincides with Rn and 
the last manifold Xq contains the image of X under the embedding n as 
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one or several of its connected components; (c) a chain of polynomial 
1-forms ax, . . . , aq in Rn such that each manifold Xi in the chain is a separ­
ating solution of the Pfaff equation ai = 0 on the preceding manifold 

DEFINITION. A pair (X, A) is called a simple Pfaff A-manifold (briefly, 
ui-manifold) if a simple realization for it exists. 

DEFINITION. The complexity of a simple realization of the pair (X, A) 
is the set of degrees of all the polynomials which are the coefficients of 
all 1-forms a{ appearing in its simple realization. By the degree of a fmiction 
from ring J. at a simple realization we mean the minimal degree of the 
polynomial sent to this function by ra*. 

In the following two examples, the pair (X, A) is defined simulta­
neously with its simple realization. The manifold X is defined as a trans­
versal intersection of q non-singular hypersurfaces fi = 0 in Rn, the ring 
A as the restriction to X of the polynomial ring and the i-th manifold 
in the chain as the intersection of the first i hypersurfaces (i.e. X^ is de­
termined by the system f = . . . = / , = 0). 

Examples. (1) Consider algebraic hypersurfaces f = 0 (the functions 
f{ are polynomials). The chain of forms is ai = df. The complexity of 
realization is determined by the degrees of equations fi = 0 defining the 
manifold X. (2) Take hypersurfaces defined by equations / 2 - = ^ — 
—exp<%, t} (here Rn = Rk xRQ, t sRk, a{ eRk* and y{ is the i-th com­

ponent of the vector y e Ra). Por the chain of forms, we take the forms 
a{ = dyi — yi^ai, dt}. The complexity of the realization is determined 
by the number q of exponents exp<ai? t} appearing in the definition of 
the manifold X. 

THEOREM (Bézout theorem for simple Pfaff manifolds). On a simple 
A-manifold of dimension Jc tJie number of non-degenerate solutions of a system 
(px = . . . = cph = o, wJiere q>i^A, is finite. TJie number of solutions is 
explicitly estimated by the complexity of any realization of tJie pair (X, A) 
and in terms of tJie degrees of tJie functions cpi at tJie realization. 

Let us quote an example of an explicit estimate. Suppose that for 
a certain realization of the pair (X, A) the codimension of X in Rn equals q, 
that the degrees of all polynomial coefficients of the forms at do not exceed 
m, and the degrees of functions <px,..., yk are equal to p1, ..., pk. 

ESTIMATE. Under the above conditions, tlie number of solutions in our 
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theorem does not exceed 

Indeed, our proof results in a more accurate but more awkward esti­
mate (the difference is especially significant in the case where the coeffi­
cients of different forms at have different degrees or have higher degrees 
but smaller-volume Newton polyhedra)". However, there is an unpleasant 
factor of the order 2ff2/2 inherent to our technique (improvements relate 
to the second factor which grows slower). 

Let us consider a set of lc equations PY = . . . = Pk = 0 in lc unknowns 
(tx, ...,tk) =t in which Pj is a degree p3- polynomial in Jc + q variables 
(t, y), where y = (y17..., ya) and yi = exp<X-, *>• 

THEOREM. The number of non-degenerate real solutions of the system 
considered is finite and does not exceed 

2^-^p1:..-pk(^pi+lf. 
To prove it, it suffices to apply the previous theorem to the manifold X 
from Example 2. Theorem 1 is a corollary of the formulated theorem 
(derived from it by the substitution of coordinates xi = exp^-)« 

Let us now proceed to general Pfaff manifolds obtained by glueing 
simple manifolds. 

6. Finiteness theorems 

In the sequel we shall give definitions of a class of Pfaff real analytic 
manifolds, functions, forms and maps. A notion of a realization is intro­
duced for each of these objects (one object has many different realizations). 
To each realization we assign a set of integers called its complexity. 

THEOREM (analogue of the Bézout theorem). The number of points 
in a Pfaff zero-dimensional manifold is finite and is explicitly estimated 
in terms of the complexity of any of its realizations. 

A Pfaff manifold is called affine if it holds at least one Morse-Pfaff func­
tion defining its proper map into the straight line JR1. The choice of such a 
function together with its realization is called the realization of the 
affine manifold. 

PINITENESS THEOREM. A Pfaff affine variety has the homotopy type 
of a finite cellular complex. The number of cells is explicitly bounded from 
above in terms of the complexity of any of its realizations. 
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COROIXARY. TJie sum of Betti numbers of an affine Pfaff manifold 
is finite and explicitly bounded in terms of the complexity of any of its real­
izations. 

Let us proceed to defining the category of Pfaff manifolds. 

7 . Pfaff manifolds, functions, forms, and maps 

We call a ring of analytic functions on an analytic manifold a base, if: 
'(a) the ring is finitely generated; (b) for any two different points of the 
manifold there is a function from the ring having different values at 
these points ; (c) differentials of the ring function generate cotangent spaces 
dn each j)oint of the manifold. 

A Pfaff cover of a manifold X with the base ring A is, by definition, 
&, representation of X as a finite sum of open sets X = [J D̂  together 
-with the rings Ai of analytic functions in the domains TJi such that (a) 
•the ring Ai contains all the functions that are restrictions of functions 
Irom the ring A to the domain Ui9 (b) all pairs (Ui9 A^ are simple Aç 
inanifolds. 

DEFINITION. A pair (X, A) is called a Pfaff A-manifold if it has a Pfaff 
eover. A function y on the manifold X is called a Pfaff A-function if there 
is a Pfaff cover for which the restrictions % of y to the domains TJi lie within 
the rings A^. 

PROPOSITION. Let B be any base ring consisting of A-functions on an A-
manifold X. Then X is a B-manifold. Moreover, classes of A-functions 
and B-functions coincide. 

DEFINITION. A manifold with a function ring K is called a Pfaff mani­
fold and functions of the ring K are called Pfaff functions if for a certain 
(and hence for any) base ring of functions A c K the manifold is an 
.A-manifold and the ring K coincides with the ring of A-functions. 

Tlie differential forms lying in the exterior algebra generated by the 
Pfaff functions and their differentials are referred to as Pfaff forms. 

A mapping <p: X->Y of Pfaff manifolds with rings Kx and KY is 
called a Pfaff map if <p*Kr £ Kx. 

PROPOSITION. Stoppose that the Pfaff functions {/J generate a base ring 
on the manifold Y. Tlie map 99: X~>Y is a Pfaff map\ if and only if the 
functions {<p*/J are Pfaff functions on X. 
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8. Realizations and their complexity 

By a realization of a Pfaff manifold with a ring K we mean a choice of 
a base ring A £ x, a Pfaff cover {D .̂, A J and simple realizations of pairs. 
TJi, Ai. The set of complexities of these simple realizations is called the 
complexity of the realization. 

A realization of the function cp e K is such a realization of the manifold 
that the restriction cpi of the function <p to each domain TJi is in the ring 
At. The complexity of a realization of a function cp is the complexity of the 
realization of the manifold together with the set of degrees of functions 
cpi for the respective simple realizations of pairs TJi, A4-. 

By a realization of a Pfaff map cp\ X->Y we mean a choice of a base 
of Pfaff functions {/J on Y together with the choice of realizations of 
functions {/J on Y and functions {<?*/*} on %.. 

A realization of a Pfaff form is a choice of its representations in terms-
of Pfaff functions and their differentials together with the choice of the. 
functions' realizations. 

Finally, by the complexity of a realization of a map or of a form we 
mean the set of complexities of the realizations of the functions involved. 

9. Operations on Pfaff manifolds 

PROPOSITION 1. On a smooth real algebraic manifold (affine or projective) 
there exists only one function ring containing a ring of non-singular rational 
functions on the algebraic manifold and transforming it into a Pfaff mani­
fold. The corresponding algebraic maps are Pfaff maps. 

PROPOSITION 2. Let an analytic manifold be embedded in 'a Pfaff mani­
fold. Then, there exists at most one function ring on the analytic manifold 
transforming it into a Pfaff manifold for which the embeddding is a Pfaff 
map. 

If the ring under the conditions of Proposition 2 does exist, then the 
manifold together with that ring is called a Pfaff sub-manifold. 

In each of the following cases 1-4, the domain in a Pfaff manifold 
is a Pfaff submanifold (subdomain). 

1. The domain consisting of one or several connected components» 
of the manifold. 

2. The domain defined by the inequality / =fi 0, where jf is a Pfaff 
function. 

3. The domain defined by the inequality / > 0, where / is a Pfaff 
function. 
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d-. The domain being the complement to the zero set of a certain Pfaff 
form. 

In each of the following cases 5-6 the submanifold is a Pfaff manifold. 
5. The submanifold being an inverse image of a regular value under 

a Pfaff map. 
6. The submamifold being a hypersurface and a separating solution 

of a Pfaff equation a = 0 for a certain Pfaff 1-form a. 
Here are two more operations on Pfaff manifolds. 
7. The product of a finite number of Pfaff manifolds is a Pfaff mani­

fold. To be exact, the product has a single function ring transforming 
it into a Pfaff manifold such that the projections onto the factors are 
Pfaff maps. 

8. Let a manifold X, equipped with a function ring A, be covered by 
a finite number of domains, Ui9 and let %{\ TJ^X be the embedding 
maps. If all the domains Ui are (^r*A.)-manifolds, then X is an A.-mani-
fold. 

For all cases 1-8 realization of all the manifolds constructed can be 
•explicitly obtained from any realizations of the objects determining the 
•construction. Its complexity is explicitly bounded from above in terms 
of the realization of the objects involved. 

Note that affine and projective (!) real algebraic manifolds are affine 
Pfaff manifolds, and that operations 1-7 leave the manifolds inside the 
elass of affine manifolds. 

10. Properties and examples of Pfaff functions and Pfaff manifolds 

1. Pfaff functions form a ring. 
2. If a Pfaff function / does not vanish anywhere, then f"1 is a Pfaff 

function. 
3. If wt and w% are Pfaff forms of a higher degree and w2 does not 

vanish anywhere, then w1lw2 is a Pfaff function. 
4. Let a domain in Rn be a Pfaff domain. Then the Pfaff functions 

in this domain form a differential ring (all partial derivatives of Pfaff 
functions are Pfaff functions). 

5. Superpositions of Pfaff maps are Pfaff maps. In particular, the 
class of Pfaff functions is closed with respect to superposition. 

6. If a vector function y = (y19..., yk) satisfies a non-degenerate set 
of equations F(x, y(x)) = 0 where E = E19..., Fk are Pfaff functions, 
then y19..., yk are Pfaff functions. 
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The most important property of the class of Pfaff functions is that 
it is closed with respect to the solution of Pfaff equations. Let us formulate 
this property more precisely. 

Let Mn+1 and Mn be (w+l)-dimensional and ^-dimensional Pfaff 
manifolds, let ut: Mn+1->Mn and y: Mn+1-^Rl be a Pfaff map and a Pfaff 
function, a be a Pfaff 1-form on Mn+1, r <z Mn+1 a separating solution 
of a Pfaff equation a = 0 o n Mn+1 and let k be the restriction of the map 
ut to r. 

PROPOSITION. If the projection n is a bijective bianalytic correspondence 
between F and Mn, then the function y o wT1 : Mn->R1 is a Pfaff function-
on Mn. 

COROLLARY. Sîtppose that the function y(t), defined on a finite or infi­
nite interval of a straight line, satisfies the differential equation y' = F(t,y), 
where F is a Pfaff function in the plane or in its domain. Then y is a Pfaff 
function. 

I t follows, from the corollary that functions exp* and arctan* on the 
straight line, In* and t on the ray t > 0, arc sin* and arc cos* on the inter­
val —1 < t < 1 are Pfaff functions. The functions sin* and cos* are not 
Pfaff functions on the straight line as they have an infinite number of 
zeroes. However, they are Pfaff functions on any finite interval a<t<b+ 
On the interval 0 < * < rc/2 the functions sin and cos satisfy the equation 
y' = \/l — y\ The complexity of the minimal realization of these functions. 
on the interval (a, b) is proportional to the integer part of the number 
(& — a) jut. 

The collection of Pfaff functions on an algebraic variety is much wider 
than that of algebraic functions. Here are examples of Pfaff functions t 
exp cp, arctany, Inf, fa, arc cos gr, arc sin gr, sin ft, cos A where cp, f, g, h are 
algebraic functions, and / > 0, —1 < g < 1 and a < h < b. The poly­
nomials in the above functions are again Pfaff functions; exponents (etc.) 
of these polynomials are again Pfaff functions, etc. (see [10]). 

Non-singular level surfaces of a Pfaff function on algebraic manifold 
provide non-trivial examples of Pfaff manifolds. A more general example 
is given by the intersections of level surfaces of different functions. The 
finiteness theorem reveals that the sum of Betti numbers of such mani­
folds can be estimated by the complexity of realizations of functions. 
determining them. 

Let us return to the algebra. 
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11. Complex fewnomials 

Complex roots of an elementary binomial equation zN—l = 0 of degree 
JSf-^oo are equi distributed with respect to arguments. The theorem for­
mulated below shows that a similar phenomenon is observed for a few-
nomial system of equations in Jc variables. The real fewnomial theorem (see 
Section 1) is one of the manifestations of this. 

First, recall some definitions. The support of a polynomial ]?Oaz
a de­

pending on Jc complex variables is the set of degrees of monomials it 
contains, i.e., the finite set of points a in the integer lattice of space Rk 

for which the coefficients Ga are not equal to zero. 
The Newton polyJiedron of a polynomial is the convex hull of its sup­

port. 
We shall denote a non-degenerate set of lc polynomial equations in lc 

complex unknowns by P = 0. Denote by Tk = (cp19..., <pk) moà27: the 
torus arguments of space Ok (the j-tln coordinate z$ of vector z e Ok is 
Zj = Ifylexpity). Let G be a domain in Tk. We are interested in the number 
N(P, G) of solutions of the set P = 0 for which all coordinates are non­
zero, and their arguments lie in the domain G. In the case G = Th this 
number is determined by Bernstein's theorem (see [3], [6-8], [13]): it 
equals the mixed volume of the Newton polyhedra of the equations mul­
tiplied by hi. Let us denote by 8(P, G) the number from Bernstein's 
theorem multiplied by the ratio of the volume of G to the volume of Tk. 
Por a certain number II(A, dG) depending only on the domain G and the 
Newton polyhedra of the equations, the following theorem holds. 

THEOREM: ([11]). TJiere exists a function cp of Jc and q sucJi tJiat for any 
non-degenerate system P = 0 of equations in Jc unlmowns containing q 
monomials the following relation Jiolds : 

\N(P,G)-S(P,G)\<<p(Jc,q)II(A,ôG). 

Let us present the definition of the number II(A, dG). Let A be a do­
main in Rk determined by the set of inequalities {|<a, <p}\ < 7u/2} corre­
sponding to a set of integer vectors a lying in the unions of the supports 
of the equations. The number JJ(A, dG) is the least number of parallel 
translates of the domain A needed to cover the boundary of G. As corol­
laries we obtain two old theorems: (1) Bernstein's theorem is obtained for 
G = Tk, since in this case II(A,ôG) = 0 ; (2) Theorem 1 (Section 1) on 
real fewnomials is obtained when G contracts to the point 0 e Tk; in this 
case n(A9 dG) = 1, 8{P9 G)->0. 
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For sets of equations with large Newton polyhedra, the number S(P,Q) 
exceeds, in order of magnitude, the numberII(A, dG) (see [11]). Therefore, 
the theorem suggests a uniform distribution of roots of a fewnomial equa­
tion with respect to arguments. 

A few words about proof of the theorem. First, it is shown that the 
average number N(Q,G) coincides with the number S(P,G). Averaging 
is performed for all systems Q = 0 whose equations have the same sup­
ports as the equations of the original set P = 0. This part of the proof 
is considerably clarified by the Atiyah paper on momentum mappings 
under almost periodic simplicial actions of the torus ([1], [2]). Then it 
is shown that numbers N(Q,G) for different systems do not differ much. 
This part of the proof is based on the theorem from Section 5. 

12. Some problems 

1. The problem of A. G. Kushnirenko : Find an exact estimate of the 
number of real roots of a fewnomial system. Give an example of a fewnomial 
system with the largest possible number of roots. (The investigation of few­
nomials originated with Kushnirenko's problem. The first result is due 
K. A. Sevastianov: he estimated the number of zeroes of a fewnomial 
on an algebraic curve. The first multidimensional result is the theorem 
on real fewnomials in Section 1.) 

2. According to the Descartes rule (see Section 1) a polynomial with 
a large number of terms has few positive roots if the sign in its coefficient 
sequence rarely changes. Find a nmltidimensional analogue of the Descartes 
rule (compare [12]). 

3. Is there any analogue of the Seidenberg-TarsJci theorem [14] for Pfaff 
manifolds 1 Probably there exists such an analogue for a narrow class 
of varieties including the class of algebraic varieties. (Added in proof: see [21].) 

4. Sow can one extend the class of Pfaff manifolds and yet retain the 
finiteness theorems? (Added in proof: see [15].) 

5. Here is a more specific problem. Let co be a 1-form in the plane 
whose coefficients are polynomials of the n-th. degree. Cosider the integral 
J of the form co with respect to a compact component of the level line 
S = c of a polynomial È of the (n+l)-th degree. When the parameter 
c ranges over intervals on which the integration curve is not restructured, 
the integral is an analytic function of the parameter. The problem (of 
V. I. Arnold) is : to estimate the member of the isolated integral zeroes as 
a function of the parameter in this interval. The Arnold problem is a lineari­
zation in the neighbourhood of Hamiltonian systems of Hubert's sixteenth 
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problem about the number of limiting cycles of polynomial dynamical 
systems in the plane. (Equation J(o) = 0 is the linearization of the cycle 
birth condition from the level line S = c of the Hamiltonian H under 
a perturbation of the Hamiltonian system by the vector field ej(co), where 
e is a small number and j is the isomorphism between cotangent and tan­
gent spaces induced by the standard simplicial structure in the plane.) 

(Added in proof: This problem was studied in [16], [17], the latter 
paper considerably advances its solution.) 
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